#!/usr/bin/env nu # AI Agents for Observability and Infrastructure Intelligence # Smart agents that analyze, predict, and optimize infrastructure use collectors.nu * use ../dataframes/polars_integration.nu * use ../lib_provisioning/ai/lib.nu * # Agent types and their capabilities export def get_agent_types []: nothing -> record { { pattern_detector: { description: "Detects anomalies and patterns in infrastructure data" capabilities: ["anomaly_detection", "trend_analysis", "pattern_recognition"] data_sources: ["metrics", "logs", "events"] frequency: "real_time" } cost_optimizer: { description: "Analyzes costs and provides optimization recommendations" capabilities: ["cost_analysis", "rightsizing", "scheduling_optimization"] data_sources: ["cost_metrics", "resource_usage", "deployment_patterns"] frequency: "daily" } performance_analyzer: { description: "Monitors and optimizes infrastructure performance" capabilities: ["bottleneck_detection", "capacity_planning", "performance_tuning"] data_sources: ["performance_metrics", "resource_metrics", "application_logs"] frequency: "continuous" } security_monitor: { description: "Monitors security events and vulnerabilities" capabilities: ["threat_detection", "vulnerability_assessment", "compliance_monitoring"] data_sources: ["security_events", "access_logs", "configuration_state"] frequency: "real_time" } predictor: { description: "Predicts infrastructure failures and capacity needs" capabilities: ["failure_prediction", "capacity_forecasting", "maintenance_scheduling"] data_sources: ["historical_metrics", "error_logs", "deployment_history"] frequency: "hourly" } auto_healer: { description: "Automatically responds to and fixes infrastructure issues" capabilities: ["auto_remediation", "failover", "scaling_actions"] data_sources: ["alerts", "health_checks", "performance_metrics"] frequency: "real_time" } } } # Start AI agents export def start_agents [ --config_file: string = "agents.toml" --data_dir: string = "data/observability" --agents: list = [] --debug = false ]: nothing -> nothing { print "🤖 Starting AI Observability Agents..." # Load configuration let config = load_agent_config $config_file # Select agents to start let selected_agents = if ($agents | is-empty) { $config.agents | transpose name settings | where {|agent| $agent.settings.enabled} | get name } else { $agents } print $"🚀 Starting agents: ($selected_agents | str join ', ')" # Initialize agents let active_agents = ($selected_agents | each {|agent_name| initialize_agent $agent_name $config $data_dir $debug }) # Start agent processing loops start_agent_loops $active_agents $debug } def load_agent_config [config_file: string]: string -> record { if ($config_file | path exists) { open $config_file } else { # Default agent configuration { agents: { pattern_detector: { enabled: true interval: "60s" sensitivity: 0.8 lookback_hours: 24 alert_threshold: 0.9 } cost_optimizer: { enabled: true interval: "3600s" # 1 hour optimization_target: 0.3 # 30% cost reduction target min_savings_threshold: 10 # $10 minimum savings } performance_analyzer: { enabled: true interval: "300s" # 5 minutes performance_thresholds: { cpu: 80 memory: 85 disk: 90 response_time: 500 # ms } } security_monitor: { enabled: true interval: "30s" threat_levels: ["medium", "high", "critical"] auto_response: false } predictor: { enabled: true interval: "1800s" # 30 minutes prediction_horizon: "7d" confidence_threshold: 0.75 } auto_healer: { enabled: false # Disabled by default for safety interval: "60s" auto_actions: ["restart_service", "scale_up", "failover"] max_actions_per_hour: 5 } } ai: { model: "local" # local, openai, anthropic temperature: 0.3 max_tokens: 1000 } notifications: { enabled: true channels: ["console", "webhook"] webhook_url: "" } } } } def initialize_agent [ agent_name: string config: record data_dir: string debug: bool ]: nothing -> record { print $"🔧 Initializing agent: ($agent_name)" let agent_config = $config.agents | get $agent_name let agent_types = get_agent_types { name: $agent_name type: ($agent_types | get $agent_name) config: $agent_config data_dir: $data_dir debug: $debug state: { last_run: null total_runs: 0 last_findings: [] performance_stats: { avg_runtime: 0 total_runtime: 0 success_rate: 1.0 } } } } def start_agent_loops [agents: list, debug: bool]: nothing -> nothing { print $"🔄 Starting ($agents | length) agent processing loops..." # Start each agent in its own processing loop $agents | each {|agent| run_agent_loop $agent $debug } | ignore # Keep the main process running while true { sleep 60sec } } def run_agent_loop [agent: record, debug: bool]: nothing -> nothing { let interval_seconds = parse_interval $agent.config.interval if $debug { print $"🤖 Agent ($agent.name) loop started (interval: ($agent.config.interval))" } while true { do { let start_time = (date now) # Execute agent logic let results = execute_agent $agent # Update agent state let runtime = ((date now) - $start_time) update_agent_performance $agent $runtime $results if $debug and ($results | length) > 0 { print $"🔍 Agent ($agent.name) found ($results | length) insights" } # Process results process_agent_results $agent $results } | complete | if ($in.exit_code != 0) { print $"❌ Error in agent ($agent.name): ($in.stderr)" } sleep ($interval_seconds * 1sec) } } def execute_agent [agent: record]: nothing -> list { match $agent.name { "pattern_detector" => (execute_pattern_detector $agent) "cost_optimizer" => (execute_cost_optimizer $agent) "performance_analyzer" => (execute_performance_analyzer $agent) "security_monitor" => (execute_security_monitor $agent) "predictor" => (execute_predictor $agent) "auto_healer" => (execute_auto_healer $agent) _ => { print $"⚠️ Unknown agent type: ($agent.name)" [] } } } # Pattern Detection Agent def execute_pattern_detector [agent: record]: nothing -> list { # Load recent observability data let recent_data = query_observability_data --time_range "1h" --data_dir $agent.data_dir if ($recent_data | length) == 0 { return [] } mut findings = [] # Detect anomalies in metrics let metric_anomalies = detect_metric_anomalies $recent_data $agent.config.sensitivity if ($metric_anomalies | length) > 0 { $findings = ($findings | append { type: "anomaly" category: "metrics" severity: "medium" findings: $metric_anomalies agent: $agent.name timestamp: (date now) }) } # Detect log patterns let log_patterns = detect_log_patterns $recent_data if ($log_patterns | length) > 0 { $findings = ($findings | append { type: "pattern" category: "logs" severity: "info" findings: $log_patterns agent: $agent.name timestamp: (date now) }) } $findings } def detect_metric_anomalies [data: any, sensitivity: float]: nothing -> list { # Simple anomaly detection based on statistical analysis # In production, this would use more sophisticated ML algorithms let metrics = ($data | where collector == "system_metrics") if ($metrics | length) < 10 { return [] # Need sufficient data points } mut anomalies = [] # Check CPU usage anomalies let cpu_metrics = ($metrics | where metric_name == "cpu" | get value) let cpu_mean = ($cpu_metrics | math avg) let cpu_std = ($cpu_metrics | math stddev) let cpu_threshold = $cpu_mean + (2 * $cpu_std * $sensitivity) let cpu_anomalies = ($metrics | where metric_name == "cpu" and value > $cpu_threshold) if ($cpu_anomalies | length) > 0 { $anomalies = ($anomalies | append { metric: "cpu" type: "high_usage" threshold: $cpu_threshold current_value: ($cpu_anomalies | get value | math max) severity: (if ($cpu_anomalies | get value | math max) > 90 { "high" } else { "medium" }) }) } # Check memory usage anomalies let memory_metrics = ($metrics | where metric_name == "memory" | get value) if ($memory_metrics | length) > 0 { let mem_mean = ($memory_metrics | math avg) let mem_std = ($memory_metrics | math stddev) let mem_threshold = $mem_mean + (2 * $mem_std * $sensitivity) let mem_anomalies = ($metrics | where metric_name == "memory" and value > $mem_threshold) if ($mem_anomalies | length) > 0 { $anomalies = ($anomalies | append { metric: "memory" type: "high_usage" threshold: $mem_threshold current_value: ($mem_anomalies | get value | math max) severity: (if ($mem_anomalies | get value | math max) > 95 { "high" } else { "medium" }) }) } } $anomalies } def detect_log_patterns [data: any]: any -> list { let log_data = ($data | where collector == "application_logs") if ($log_data | length) == 0 { return [] } mut patterns = [] # Detect error rate spikes let error_logs = ($log_data | where level in ["error", "fatal"]) let total_logs = ($log_data | length) let error_rate = if $total_logs > 0 { ($error_logs | length) / $total_logs } else { 0 } if $error_rate > 0.05 { # 5% error rate threshold $patterns = ($patterns | append { pattern: "high_error_rate" value: $error_rate threshold: 0.05 severity: (if $error_rate > 0.10 { "high" } else { "medium" }) }) } # Detect repeated error messages let error_messages = ($error_logs | group-by message | transpose message count | where count > 3) if ($error_messages | length) > 0 { $patterns = ($patterns | append { pattern: "repeated_errors" messages: ($error_messages | get message) severity: "medium" }) } $patterns } # Cost Optimization Agent def execute_cost_optimizer [agent: record]: nothing -> list { let cost_data = query_observability_data --collector "cost_metrics" --time_range "24h" --data_dir $agent.data_dir if ($cost_data | length) == 0 { return [] } # Analyze resource utilization vs cost let utilization_analysis = analyze_resource_utilization $cost_data let utilization_optimizations = ($utilization_analysis | each {|analysis| if $analysis.potential_savings > $agent.config.min_savings_threshold { { type: "rightsizing" resource: $analysis.resource current_cost: $analysis.current_cost potential_savings: $analysis.potential_savings recommendation: $analysis.recommendation confidence: $analysis.confidence } } } | compact) # Identify unused resources let unused_resources = identify_unused_resources $cost_data let unused_optimizations = ($unused_resources | each {|resource| { type: "unused_resource" resource: $resource.name cost: $resource.cost recommendation: "Consider terminating or downsizing" confidence: 0.9 } }) let optimizations = ($utilization_optimizations | append $unused_optimizations) $optimizations | each {|opt| $opt | upsert agent $agent.name | upsert timestamp (date now) } } def analyze_resource_utilization [cost_data: any]: any -> list { # Mock analysis - in production would use real utilization data [ { resource: "ec2-i-12345" current_cost: 120.0 utilization: 0.25 potential_savings: 60.0 recommendation: "Downsize from m5.xlarge to m5.large" confidence: 0.85 } ] } def identify_unused_resources [cost_data: any]: any -> list { # Mock analysis for unused resources [ { name: "unused-volume-123" cost: 15.0 type: "ebs_volume" last_access: "30d" } ] } # Performance Analysis Agent def execute_performance_analyzer [agent: record]: nothing -> list { let perf_data = query_observability_data --collector "performance_metrics" --time_range "1h" --data_dir $agent.data_dir if ($perf_data | length) == 0 { return [] } mut performance_issues = [] # Check against performance thresholds let thresholds = $agent.config.performance_thresholds # CPU performance analysis let cpu_issues = ($perf_data | where metric_name == "cpu" and value > $thresholds.cpu) if ($cpu_issues | length) > 0 { $performance_issues = ($performance_issues | append { type: "cpu_bottleneck" severity: "high" affected_resources: ($cpu_issues | get resource_id | uniq) max_value: ($cpu_issues | get value | math max) threshold: $thresholds.cpu }) } # Memory performance analysis let memory_issues = ($perf_data | where metric_name == "memory" and value > $thresholds.memory) if ($memory_issues | length) > 0 { $performance_issues = ($performance_issues | append { type: "memory_bottleneck" severity: "high" affected_resources: ($memory_issues | get resource_id | uniq) max_value: ($memory_issues | get value | math max) threshold: $thresholds.memory }) } $performance_issues | each {|issue| $issue | upsert agent $agent.name | upsert timestamp (date now) } } # Security Monitor Agent def execute_security_monitor [agent: record]: nothing -> list { let security_data = query_observability_data --collector "security_events" --time_range "5m" --data_dir $agent.data_dir if ($security_data | length) == 0 { return [] } mut security_alerts = [] # Analyze authentication failures let auth_failures = ($security_data | where event_type == "auth_failure") if ($auth_failures | length) > 5 { # More than 5 failures in 5 minutes $security_alerts = ($security_alerts | append { type: "brute_force_attempt" severity: "high" event_count: ($auth_failures | length) timeframe: "5m" recommendation: "Consider blocking source IPs" }) } # Check for privilege escalation attempts let escalation_events = ($security_data | where event_type == "privilege_escalation") if ($escalation_events | length) > 0 { $security_alerts = ($security_alerts | append { type: "privilege_escalation" severity: "critical" event_count: ($escalation_events | length) recommendation: "Immediate investigation required" }) } $security_alerts | each {|alert| $alert | upsert agent $agent.name | upsert timestamp (date now) } } # Predictor Agent def execute_predictor [agent: record]: nothing -> list { let historical_data = query_observability_data --time_range $"($agent.config.prediction_horizon)" --data_dir $agent.data_dir if ($historical_data | length) < 100 { return [] # Need sufficient historical data } mut predictions = [] # Predict capacity needs let capacity_prediction = predict_capacity_needs $historical_data $agent.config if $capacity_prediction.confidence > $agent.config.confidence_threshold { $predictions = ($predictions | append { type: "capacity_forecast" forecast_horizon: $agent.config.prediction_horizon prediction: $capacity_prediction.prediction confidence: $capacity_prediction.confidence recommendation: $capacity_prediction.recommendation }) } # Predict potential failures let failure_prediction = predict_failures $historical_data $agent.config if $failure_prediction.risk_score > 0.8 { $predictions = ($predictions | append { type: "failure_prediction" risk_score: $failure_prediction.risk_score predicted_failure_time: $failure_prediction.estimated_time affected_components: $failure_prediction.components recommendation: $failure_prediction.recommendation }) } $predictions | each {|pred| $pred | upsert agent $agent.name | upsert timestamp (date now) } } def predict_capacity_needs [data: any, config: record]: nothing -> record { # Simple trend-based prediction # In production, would use time series forecasting models let cpu_trend = analyze_metric_trend $data "cpu" let memory_trend = analyze_metric_trend $data "memory" { prediction: { cpu_growth_rate: $cpu_trend.growth_rate memory_growth_rate: $memory_trend.growth_rate estimated_capacity_date: ((date now) + 30day) } confidence: 0.75 recommendation: (if $cpu_trend.growth_rate > 0.1 { "Consider adding CPU capacity" } else { "Current capacity sufficient" }) } } def analyze_metric_trend [data: any, metric: string]: nothing -> record { let metric_data = ($data | where metric_name == $metric | sort-by timestamp) if ($metric_data | length) < 10 { return { growth_rate: 0, trend: "insufficient_data" } } # Simple linear trend analysis let first_half = ($metric_data | first (($metric_data | length) // 2) | get value | math avg) let second_half = ($metric_data | last (($metric_data | length) // 2) | get value | math avg) let growth_rate = ($second_half - $first_half) / $first_half { growth_rate: $growth_rate trend: (if $growth_rate > 0.05 { "increasing" } else if $growth_rate < -0.05 { "decreasing" } else { "stable" }) } } def predict_failures [data: any, config: record]: nothing -> record { # Analyze patterns that typically precede failures let error_rate = calculate_error_rate $data let resource_stress = calculate_resource_stress $data let risk_score = ($error_rate * 0.6) + ($resource_stress * 0.4) { risk_score: $risk_score estimated_time: (if $risk_score > 0.9 { ((date now) + 2hr) } else { ((date now) + 1day) }) components: ["cpu", "memory", "application"] recommendation: (if $risk_score > 0.8 { "Immediate attention required" } else { "Monitor closely" }) } } def calculate_error_rate [data: any]: any -> float { let total_logs = ($data | where collector == "application_logs" | length) if $total_logs == 0 { return 0.0 } let error_logs = ($data | where collector == "application_logs" and level in ["error", "fatal"] | length) $error_logs / $total_logs } def calculate_resource_stress [data: any]: any -> float { let cpu_stress = ($data | where metric_name == "cpu" | get value | math avg) / 100 let memory_stress = ($data | where metric_name == "memory" | get value | math avg) / 100 ($cpu_stress + $memory_stress) / 2 } # Auto Healer Agent (requires careful configuration) def execute_auto_healer [agent: record]: nothing -> list { if not $agent.config.auto_response { return [] # Safety check } let alerts = query_observability_data --collector "alerts" --time_range "5m" --data_dir $agent.data_dir if ($alerts | length) == 0 { return [] } # Only process critical alerts for auto-healing let critical_alerts = ($alerts | where severity == "critical") let actions = ($critical_alerts | each {|alert| let action = determine_healing_action $alert $agent.config if ($action | is-not-empty) { { alert_id: $alert.id action_type: $action.type action_details: $action.details risk_level: $action.risk auto_executed: false # Manual approval required by default } } } | compact) $actions } def determine_healing_action [alert: record, config: record]: nothing -> record { match $alert.type { "service_down" => { { type: "restart_service" details: { service: $alert.service, method: "systemctl_restart" } risk: "low" } } "high_cpu" => { { type: "scale_up" details: { resource: $alert.resource, scale_factor: 1.5 } risk: "medium" } } _ => {} } } # Utility functions def parse_interval [interval: string]: string -> int { match $interval { $i if ($i | str ends-with "s") => ($i | str replace "s" "" | into int) $i if ($i | str ends-with "m") => (($i | str replace "m" "" | into int) * 60) $i if ($i | str ends-with "h") => (($i | str replace "h" "" | into int) * 3600) _ => 60 } } def update_agent_performance [agent: record, runtime: duration, results: list]: nothing -> nothing { # Update agent performance statistics # This would modify agent state in a real implementation } def process_agent_results [agent: record, results: list]: nothing -> nothing { if ($results | length) > 0 { print $"🔍 Agent ($agent.name) generated ($results | length) insights:" $results | each {|result| print $" - ($result.type): ($result | get description? | default 'No description')" } | ignore # Send notifications if configured send_agent_notifications $agent $results } } def send_agent_notifications [agent: record, results: list]: nothing -> nothing { # Send notifications for agent findings $results | each {|result| if $result.severity? in ["high", "critical"] { print $"🚨 ALERT: ($result.type) - ($result | get message? | default 'Critical finding')" } } | ignore } # Agent management commands export def list_running_agents []: nothing -> list { # List currently running agents # This would query actual running processes in production [] } export def stop_agent [agent_name: string]: string -> nothing { print $"🛑 Stopping agent: ($agent_name)" # Implementation would stop the specific agent process } export def get_agent_status [agent_name?: string]: nothing -> any { if ($agent_name | is-empty) { print "📊 All agents status:" # Return status of all agents [] } else { print $"📊 Status of agent: ($agent_name)" # Return status of specific agent {} } }