734 lines
24 KiB
Plaintext
734 lines
24 KiB
Plaintext
![]() |
#!/usr/bin/env nu
|
||
|
|
||
|
# AI Agents for Observability and Infrastructure Intelligence
|
||
|
# Smart agents that analyze, predict, and optimize infrastructure
|
||
|
|
||
|
use collectors.nu *
|
||
|
use ../dataframes/polars_integration.nu *
|
||
|
use ../lib_provisioning/ai/lib.nu *
|
||
|
|
||
|
# Agent types and their capabilities
|
||
|
export def get_agent_types []: nothing -> record {
|
||
|
{
|
||
|
pattern_detector: {
|
||
|
description: "Detects anomalies and patterns in infrastructure data"
|
||
|
capabilities: ["anomaly_detection", "trend_analysis", "pattern_recognition"]
|
||
|
data_sources: ["metrics", "logs", "events"]
|
||
|
frequency: "real_time"
|
||
|
}
|
||
|
cost_optimizer: {
|
||
|
description: "Analyzes costs and provides optimization recommendations"
|
||
|
capabilities: ["cost_analysis", "rightsizing", "scheduling_optimization"]
|
||
|
data_sources: ["cost_metrics", "resource_usage", "deployment_patterns"]
|
||
|
frequency: "daily"
|
||
|
}
|
||
|
performance_analyzer: {
|
||
|
description: "Monitors and optimizes infrastructure performance"
|
||
|
capabilities: ["bottleneck_detection", "capacity_planning", "performance_tuning"]
|
||
|
data_sources: ["performance_metrics", "resource_metrics", "application_logs"]
|
||
|
frequency: "continuous"
|
||
|
}
|
||
|
security_monitor: {
|
||
|
description: "Monitors security events and vulnerabilities"
|
||
|
capabilities: ["threat_detection", "vulnerability_assessment", "compliance_monitoring"]
|
||
|
data_sources: ["security_events", "access_logs", "configuration_state"]
|
||
|
frequency: "real_time"
|
||
|
}
|
||
|
predictor: {
|
||
|
description: "Predicts infrastructure failures and capacity needs"
|
||
|
capabilities: ["failure_prediction", "capacity_forecasting", "maintenance_scheduling"]
|
||
|
data_sources: ["historical_metrics", "error_logs", "deployment_history"]
|
||
|
frequency: "hourly"
|
||
|
}
|
||
|
auto_healer: {
|
||
|
description: "Automatically responds to and fixes infrastructure issues"
|
||
|
capabilities: ["auto_remediation", "failover", "scaling_actions"]
|
||
|
data_sources: ["alerts", "health_checks", "performance_metrics"]
|
||
|
frequency: "real_time"
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Start AI agents
|
||
|
export def start_agents [
|
||
|
--config_file: string = "agents.toml"
|
||
|
--data_dir: string = "data/observability"
|
||
|
--agents: list<string> = []
|
||
|
--debug = false
|
||
|
]: nothing -> nothing {
|
||
|
|
||
|
print "๐ค Starting AI Observability Agents..."
|
||
|
|
||
|
# Load configuration
|
||
|
let config = load_agent_config $config_file
|
||
|
|
||
|
# Select agents to start
|
||
|
let selected_agents = if ($agents | is-empty) {
|
||
|
$config.agents | transpose name settings | where {|agent| $agent.settings.enabled} | get name
|
||
|
} else {
|
||
|
$agents
|
||
|
}
|
||
|
|
||
|
print $"๐ Starting agents: ($selected_agents | str join ', ')"
|
||
|
|
||
|
# Initialize agents
|
||
|
let active_agents = ($selected_agents | each {|agent_name|
|
||
|
initialize_agent $agent_name $config $data_dir $debug
|
||
|
})
|
||
|
|
||
|
# Start agent processing loops
|
||
|
start_agent_loops $active_agents $debug
|
||
|
}
|
||
|
|
||
|
def load_agent_config [config_file: string]: string -> record {
|
||
|
if ($config_file | path exists) {
|
||
|
open $config_file
|
||
|
} else {
|
||
|
# Default agent configuration
|
||
|
{
|
||
|
agents: {
|
||
|
pattern_detector: {
|
||
|
enabled: true
|
||
|
interval: "60s"
|
||
|
sensitivity: 0.8
|
||
|
lookback_hours: 24
|
||
|
alert_threshold: 0.9
|
||
|
}
|
||
|
cost_optimizer: {
|
||
|
enabled: true
|
||
|
interval: "3600s" # 1 hour
|
||
|
optimization_target: 0.3 # 30% cost reduction target
|
||
|
min_savings_threshold: 10 # $10 minimum savings
|
||
|
}
|
||
|
performance_analyzer: {
|
||
|
enabled: true
|
||
|
interval: "300s" # 5 minutes
|
||
|
performance_thresholds: {
|
||
|
cpu: 80
|
||
|
memory: 85
|
||
|
disk: 90
|
||
|
response_time: 500 # ms
|
||
|
}
|
||
|
}
|
||
|
security_monitor: {
|
||
|
enabled: true
|
||
|
interval: "30s"
|
||
|
threat_levels: ["medium", "high", "critical"]
|
||
|
auto_response: false
|
||
|
}
|
||
|
predictor: {
|
||
|
enabled: true
|
||
|
interval: "1800s" # 30 minutes
|
||
|
prediction_horizon: "7d"
|
||
|
confidence_threshold: 0.75
|
||
|
}
|
||
|
auto_healer: {
|
||
|
enabled: false # Disabled by default for safety
|
||
|
interval: "60s"
|
||
|
auto_actions: ["restart_service", "scale_up", "failover"]
|
||
|
max_actions_per_hour: 5
|
||
|
}
|
||
|
}
|
||
|
ai: {
|
||
|
model: "local" # local, openai, anthropic
|
||
|
temperature: 0.3
|
||
|
max_tokens: 1000
|
||
|
}
|
||
|
notifications: {
|
||
|
enabled: true
|
||
|
channels: ["console", "webhook"]
|
||
|
webhook_url: ""
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def initialize_agent [
|
||
|
agent_name: string
|
||
|
config: record
|
||
|
data_dir: string
|
||
|
debug: bool
|
||
|
]: nothing -> record {
|
||
|
|
||
|
print $"๐ง Initializing agent: ($agent_name)"
|
||
|
|
||
|
let agent_config = $config.agents | get $agent_name
|
||
|
let agent_types = get_agent_types
|
||
|
|
||
|
{
|
||
|
name: $agent_name
|
||
|
type: ($agent_types | get $agent_name)
|
||
|
config: $agent_config
|
||
|
data_dir: $data_dir
|
||
|
debug: $debug
|
||
|
state: {
|
||
|
last_run: null
|
||
|
total_runs: 0
|
||
|
last_findings: []
|
||
|
performance_stats: {
|
||
|
avg_runtime: 0
|
||
|
total_runtime: 0
|
||
|
success_rate: 1.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def start_agent_loops [agents: list, debug: bool]: nothing -> nothing {
|
||
|
print $"๐ Starting ($agents | length) agent processing loops..."
|
||
|
|
||
|
# Start each agent in its own processing loop
|
||
|
$agents | each {|agent|
|
||
|
run_agent_loop $agent $debug
|
||
|
} | ignore
|
||
|
|
||
|
# Keep the main process running
|
||
|
while true {
|
||
|
sleep 60sec
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def run_agent_loop [agent: record, debug: bool]: nothing -> nothing {
|
||
|
let interval_seconds = parse_interval $agent.config.interval
|
||
|
|
||
|
if $debug {
|
||
|
print $"๐ค Agent ($agent.name) loop started (interval: ($agent.config.interval))"
|
||
|
}
|
||
|
|
||
|
while true {
|
||
|
do {
|
||
|
let start_time = (date now)
|
||
|
|
||
|
# Execute agent logic
|
||
|
let results = execute_agent $agent
|
||
|
|
||
|
# Update agent state
|
||
|
let runtime = ((date now) - $start_time)
|
||
|
update_agent_performance $agent $runtime $results
|
||
|
|
||
|
if $debug and ($results | length) > 0 {
|
||
|
print $"๐ Agent ($agent.name) found ($results | length) insights"
|
||
|
}
|
||
|
|
||
|
# Process results
|
||
|
process_agent_results $agent $results
|
||
|
|
||
|
} | complete | if ($in.exit_code != 0) {
|
||
|
print $"โ Error in agent ($agent.name): ($in.stderr)"
|
||
|
}
|
||
|
|
||
|
sleep ($interval_seconds * 1sec)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def execute_agent [agent: record]: nothing -> list {
|
||
|
match $agent.name {
|
||
|
"pattern_detector" => (execute_pattern_detector $agent)
|
||
|
"cost_optimizer" => (execute_cost_optimizer $agent)
|
||
|
"performance_analyzer" => (execute_performance_analyzer $agent)
|
||
|
"security_monitor" => (execute_security_monitor $agent)
|
||
|
"predictor" => (execute_predictor $agent)
|
||
|
"auto_healer" => (execute_auto_healer $agent)
|
||
|
_ => {
|
||
|
print $"โ ๏ธ Unknown agent type: ($agent.name)"
|
||
|
[]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Pattern Detection Agent
|
||
|
def execute_pattern_detector [agent: record]: nothing -> list {
|
||
|
# Load recent observability data
|
||
|
let recent_data = query_observability_data --time_range "1h" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($recent_data | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
mut findings = []
|
||
|
|
||
|
# Detect anomalies in metrics
|
||
|
let metric_anomalies = detect_metric_anomalies $recent_data $agent.config.sensitivity
|
||
|
|
||
|
if ($metric_anomalies | length) > 0 {
|
||
|
$findings = ($findings | append {
|
||
|
type: "anomaly"
|
||
|
category: "metrics"
|
||
|
severity: "medium"
|
||
|
findings: $metric_anomalies
|
||
|
agent: $agent.name
|
||
|
timestamp: (date now)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Detect log patterns
|
||
|
let log_patterns = detect_log_patterns $recent_data
|
||
|
|
||
|
if ($log_patterns | length) > 0 {
|
||
|
$findings = ($findings | append {
|
||
|
type: "pattern"
|
||
|
category: "logs"
|
||
|
severity: "info"
|
||
|
findings: $log_patterns
|
||
|
agent: $agent.name
|
||
|
timestamp: (date now)
|
||
|
})
|
||
|
}
|
||
|
|
||
|
$findings
|
||
|
}
|
||
|
|
||
|
def detect_metric_anomalies [data: any, sensitivity: float]: nothing -> list {
|
||
|
# Simple anomaly detection based on statistical analysis
|
||
|
# In production, this would use more sophisticated ML algorithms
|
||
|
|
||
|
let metrics = ($data | where collector == "system_metrics")
|
||
|
|
||
|
if ($metrics | length) < 10 {
|
||
|
return [] # Need sufficient data points
|
||
|
}
|
||
|
|
||
|
mut anomalies = []
|
||
|
|
||
|
# Check CPU usage anomalies
|
||
|
let cpu_metrics = ($metrics | where metric_name == "cpu" | get value)
|
||
|
let cpu_mean = ($cpu_metrics | math avg)
|
||
|
let cpu_std = ($cpu_metrics | math stddev)
|
||
|
let cpu_threshold = $cpu_mean + (2 * $cpu_std * $sensitivity)
|
||
|
|
||
|
let cpu_anomalies = ($metrics | where metric_name == "cpu" and value > $cpu_threshold)
|
||
|
if ($cpu_anomalies | length) > 0 {
|
||
|
$anomalies = ($anomalies | append {
|
||
|
metric: "cpu"
|
||
|
type: "high_usage"
|
||
|
threshold: $cpu_threshold
|
||
|
current_value: ($cpu_anomalies | get value | math max)
|
||
|
severity: (if ($cpu_anomalies | get value | math max) > 90 { "high" } else { "medium" })
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Check memory usage anomalies
|
||
|
let memory_metrics = ($metrics | where metric_name == "memory" | get value)
|
||
|
if ($memory_metrics | length) > 0 {
|
||
|
let mem_mean = ($memory_metrics | math avg)
|
||
|
let mem_std = ($memory_metrics | math stddev)
|
||
|
let mem_threshold = $mem_mean + (2 * $mem_std * $sensitivity)
|
||
|
|
||
|
let mem_anomalies = ($metrics | where metric_name == "memory" and value > $mem_threshold)
|
||
|
if ($mem_anomalies | length) > 0 {
|
||
|
$anomalies = ($anomalies | append {
|
||
|
metric: "memory"
|
||
|
type: "high_usage"
|
||
|
threshold: $mem_threshold
|
||
|
current_value: ($mem_anomalies | get value | math max)
|
||
|
severity: (if ($mem_anomalies | get value | math max) > 95 { "high" } else { "medium" })
|
||
|
})
|
||
|
}
|
||
|
}
|
||
|
|
||
|
$anomalies
|
||
|
}
|
||
|
|
||
|
def detect_log_patterns [data: any]: any -> list {
|
||
|
let log_data = ($data | where collector == "application_logs")
|
||
|
|
||
|
if ($log_data | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
mut patterns = []
|
||
|
|
||
|
# Detect error rate spikes
|
||
|
let error_logs = ($log_data | where level in ["error", "fatal"])
|
||
|
let total_logs = ($log_data | length)
|
||
|
let error_rate = if $total_logs > 0 { ($error_logs | length) / $total_logs } else { 0 }
|
||
|
|
||
|
if $error_rate > 0.05 { # 5% error rate threshold
|
||
|
$patterns = ($patterns | append {
|
||
|
pattern: "high_error_rate"
|
||
|
value: $error_rate
|
||
|
threshold: 0.05
|
||
|
severity: (if $error_rate > 0.10 { "high" } else { "medium" })
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Detect repeated error messages
|
||
|
let error_messages = ($error_logs | group-by message | transpose message count | where count > 3)
|
||
|
if ($error_messages | length) > 0 {
|
||
|
$patterns = ($patterns | append {
|
||
|
pattern: "repeated_errors"
|
||
|
messages: ($error_messages | get message)
|
||
|
severity: "medium"
|
||
|
})
|
||
|
}
|
||
|
|
||
|
$patterns
|
||
|
}
|
||
|
|
||
|
# Cost Optimization Agent
|
||
|
def execute_cost_optimizer [agent: record]: nothing -> list {
|
||
|
let cost_data = query_observability_data --collector "cost_metrics" --time_range "24h" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($cost_data | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
# Analyze resource utilization vs cost
|
||
|
let utilization_analysis = analyze_resource_utilization $cost_data
|
||
|
let utilization_optimizations = ($utilization_analysis | each {|analysis|
|
||
|
if $analysis.potential_savings > $agent.config.min_savings_threshold {
|
||
|
{
|
||
|
type: "rightsizing"
|
||
|
resource: $analysis.resource
|
||
|
current_cost: $analysis.current_cost
|
||
|
potential_savings: $analysis.potential_savings
|
||
|
recommendation: $analysis.recommendation
|
||
|
confidence: $analysis.confidence
|
||
|
}
|
||
|
}
|
||
|
} | compact)
|
||
|
|
||
|
# Identify unused resources
|
||
|
let unused_resources = identify_unused_resources $cost_data
|
||
|
let unused_optimizations = ($unused_resources | each {|resource|
|
||
|
{
|
||
|
type: "unused_resource"
|
||
|
resource: $resource.name
|
||
|
cost: $resource.cost
|
||
|
recommendation: "Consider terminating or downsizing"
|
||
|
confidence: 0.9
|
||
|
}
|
||
|
})
|
||
|
|
||
|
let optimizations = ($utilization_optimizations | append $unused_optimizations)
|
||
|
|
||
|
$optimizations | each {|opt|
|
||
|
$opt | upsert agent $agent.name | upsert timestamp (date now)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def analyze_resource_utilization [cost_data: any]: any -> list {
|
||
|
# Mock analysis - in production would use real utilization data
|
||
|
[
|
||
|
{
|
||
|
resource: "ec2-i-12345"
|
||
|
current_cost: 120.0
|
||
|
utilization: 0.25
|
||
|
potential_savings: 60.0
|
||
|
recommendation: "Downsize from m5.xlarge to m5.large"
|
||
|
confidence: 0.85
|
||
|
}
|
||
|
]
|
||
|
}
|
||
|
|
||
|
def identify_unused_resources [cost_data: any]: any -> list {
|
||
|
# Mock analysis for unused resources
|
||
|
[
|
||
|
{
|
||
|
name: "unused-volume-123"
|
||
|
cost: 15.0
|
||
|
type: "ebs_volume"
|
||
|
last_access: "30d"
|
||
|
}
|
||
|
]
|
||
|
}
|
||
|
|
||
|
# Performance Analysis Agent
|
||
|
def execute_performance_analyzer [agent: record]: nothing -> list {
|
||
|
let perf_data = query_observability_data --collector "performance_metrics" --time_range "1h" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($perf_data | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
mut performance_issues = []
|
||
|
|
||
|
# Check against performance thresholds
|
||
|
let thresholds = $agent.config.performance_thresholds
|
||
|
|
||
|
# CPU performance analysis
|
||
|
let cpu_issues = ($perf_data | where metric_name == "cpu" and value > $thresholds.cpu)
|
||
|
if ($cpu_issues | length) > 0 {
|
||
|
$performance_issues = ($performance_issues | append {
|
||
|
type: "cpu_bottleneck"
|
||
|
severity: "high"
|
||
|
affected_resources: ($cpu_issues | get resource_id | uniq)
|
||
|
max_value: ($cpu_issues | get value | math max)
|
||
|
threshold: $thresholds.cpu
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Memory performance analysis
|
||
|
let memory_issues = ($perf_data | where metric_name == "memory" and value > $thresholds.memory)
|
||
|
if ($memory_issues | length) > 0 {
|
||
|
$performance_issues = ($performance_issues | append {
|
||
|
type: "memory_bottleneck"
|
||
|
severity: "high"
|
||
|
affected_resources: ($memory_issues | get resource_id | uniq)
|
||
|
max_value: ($memory_issues | get value | math max)
|
||
|
threshold: $thresholds.memory
|
||
|
})
|
||
|
}
|
||
|
|
||
|
$performance_issues | each {|issue|
|
||
|
$issue | upsert agent $agent.name | upsert timestamp (date now)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Security Monitor Agent
|
||
|
def execute_security_monitor [agent: record]: nothing -> list {
|
||
|
let security_data = query_observability_data --collector "security_events" --time_range "5m" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($security_data | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
mut security_alerts = []
|
||
|
|
||
|
# Analyze authentication failures
|
||
|
let auth_failures = ($security_data | where event_type == "auth_failure")
|
||
|
if ($auth_failures | length) > 5 { # More than 5 failures in 5 minutes
|
||
|
$security_alerts = ($security_alerts | append {
|
||
|
type: "brute_force_attempt"
|
||
|
severity: "high"
|
||
|
event_count: ($auth_failures | length)
|
||
|
timeframe: "5m"
|
||
|
recommendation: "Consider blocking source IPs"
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Check for privilege escalation attempts
|
||
|
let escalation_events = ($security_data | where event_type == "privilege_escalation")
|
||
|
if ($escalation_events | length) > 0 {
|
||
|
$security_alerts = ($security_alerts | append {
|
||
|
type: "privilege_escalation"
|
||
|
severity: "critical"
|
||
|
event_count: ($escalation_events | length)
|
||
|
recommendation: "Immediate investigation required"
|
||
|
})
|
||
|
}
|
||
|
|
||
|
$security_alerts | each {|alert|
|
||
|
$alert | upsert agent $agent.name | upsert timestamp (date now)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Predictor Agent
|
||
|
def execute_predictor [agent: record]: nothing -> list {
|
||
|
let historical_data = query_observability_data --time_range $"($agent.config.prediction_horizon)" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($historical_data | length) < 100 {
|
||
|
return [] # Need sufficient historical data
|
||
|
}
|
||
|
|
||
|
mut predictions = []
|
||
|
|
||
|
# Predict capacity needs
|
||
|
let capacity_prediction = predict_capacity_needs $historical_data $agent.config
|
||
|
|
||
|
if $capacity_prediction.confidence > $agent.config.confidence_threshold {
|
||
|
$predictions = ($predictions | append {
|
||
|
type: "capacity_forecast"
|
||
|
forecast_horizon: $agent.config.prediction_horizon
|
||
|
prediction: $capacity_prediction.prediction
|
||
|
confidence: $capacity_prediction.confidence
|
||
|
recommendation: $capacity_prediction.recommendation
|
||
|
})
|
||
|
}
|
||
|
|
||
|
# Predict potential failures
|
||
|
let failure_prediction = predict_failures $historical_data $agent.config
|
||
|
|
||
|
if $failure_prediction.risk_score > 0.8 {
|
||
|
$predictions = ($predictions | append {
|
||
|
type: "failure_prediction"
|
||
|
risk_score: $failure_prediction.risk_score
|
||
|
predicted_failure_time: $failure_prediction.estimated_time
|
||
|
affected_components: $failure_prediction.components
|
||
|
recommendation: $failure_prediction.recommendation
|
||
|
})
|
||
|
}
|
||
|
|
||
|
$predictions | each {|pred|
|
||
|
$pred | upsert agent $agent.name | upsert timestamp (date now)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def predict_capacity_needs [data: any, config: record]: nothing -> record {
|
||
|
# Simple trend-based prediction
|
||
|
# In production, would use time series forecasting models
|
||
|
|
||
|
let cpu_trend = analyze_metric_trend $data "cpu"
|
||
|
let memory_trend = analyze_metric_trend $data "memory"
|
||
|
|
||
|
{
|
||
|
prediction: {
|
||
|
cpu_growth_rate: $cpu_trend.growth_rate
|
||
|
memory_growth_rate: $memory_trend.growth_rate
|
||
|
estimated_capacity_date: ((date now) + 30day)
|
||
|
}
|
||
|
confidence: 0.75
|
||
|
recommendation: (if $cpu_trend.growth_rate > 0.1 { "Consider adding CPU capacity" } else { "Current capacity sufficient" })
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def analyze_metric_trend [data: any, metric: string]: nothing -> record {
|
||
|
let metric_data = ($data | where metric_name == $metric | sort-by timestamp)
|
||
|
|
||
|
if ($metric_data | length) < 10 {
|
||
|
return { growth_rate: 0, trend: "insufficient_data" }
|
||
|
}
|
||
|
|
||
|
# Simple linear trend analysis
|
||
|
let first_half = ($metric_data | first (($metric_data | length) // 2) | get value | math avg)
|
||
|
let second_half = ($metric_data | last (($metric_data | length) // 2) | get value | math avg)
|
||
|
|
||
|
let growth_rate = ($second_half - $first_half) / $first_half
|
||
|
|
||
|
{
|
||
|
growth_rate: $growth_rate
|
||
|
trend: (if $growth_rate > 0.05 { "increasing" } else if $growth_rate < -0.05 { "decreasing" } else { "stable" })
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def predict_failures [data: any, config: record]: nothing -> record {
|
||
|
# Analyze patterns that typically precede failures
|
||
|
let error_rate = calculate_error_rate $data
|
||
|
let resource_stress = calculate_resource_stress $data
|
||
|
|
||
|
let risk_score = ($error_rate * 0.6) + ($resource_stress * 0.4)
|
||
|
|
||
|
{
|
||
|
risk_score: $risk_score
|
||
|
estimated_time: (if $risk_score > 0.9 { ((date now) + 2hr) } else { ((date now) + 1day) })
|
||
|
components: ["cpu", "memory", "application"]
|
||
|
recommendation: (if $risk_score > 0.8 { "Immediate attention required" } else { "Monitor closely" })
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def calculate_error_rate [data: any]: any -> float {
|
||
|
let total_logs = ($data | where collector == "application_logs" | length)
|
||
|
if $total_logs == 0 { return 0.0 }
|
||
|
|
||
|
let error_logs = ($data | where collector == "application_logs" and level in ["error", "fatal"] | length)
|
||
|
$error_logs / $total_logs
|
||
|
}
|
||
|
|
||
|
def calculate_resource_stress [data: any]: any -> float {
|
||
|
let cpu_stress = ($data | where metric_name == "cpu" | get value | math avg) / 100
|
||
|
let memory_stress = ($data | where metric_name == "memory" | get value | math avg) / 100
|
||
|
|
||
|
($cpu_stress + $memory_stress) / 2
|
||
|
}
|
||
|
|
||
|
# Auto Healer Agent (requires careful configuration)
|
||
|
def execute_auto_healer [agent: record]: nothing -> list {
|
||
|
if not $agent.config.auto_response {
|
||
|
return [] # Safety check
|
||
|
}
|
||
|
|
||
|
let alerts = query_observability_data --collector "alerts" --time_range "5m" --data_dir $agent.data_dir
|
||
|
|
||
|
if ($alerts | length) == 0 {
|
||
|
return []
|
||
|
}
|
||
|
|
||
|
# Only process critical alerts for auto-healing
|
||
|
let critical_alerts = ($alerts | where severity == "critical")
|
||
|
|
||
|
let actions = ($critical_alerts | each {|alert|
|
||
|
let action = determine_healing_action $alert $agent.config
|
||
|
|
||
|
if ($action | is-not-empty) {
|
||
|
{
|
||
|
alert_id: $alert.id
|
||
|
action_type: $action.type
|
||
|
action_details: $action.details
|
||
|
risk_level: $action.risk
|
||
|
auto_executed: false # Manual approval required by default
|
||
|
}
|
||
|
}
|
||
|
} | compact)
|
||
|
|
||
|
$actions
|
||
|
}
|
||
|
|
||
|
def determine_healing_action [alert: record, config: record]: nothing -> record {
|
||
|
match $alert.type {
|
||
|
"service_down" => {
|
||
|
{
|
||
|
type: "restart_service"
|
||
|
details: { service: $alert.service, method: "systemctl_restart" }
|
||
|
risk: "low"
|
||
|
}
|
||
|
}
|
||
|
"high_cpu" => {
|
||
|
{
|
||
|
type: "scale_up"
|
||
|
details: { resource: $alert.resource, scale_factor: 1.5 }
|
||
|
risk: "medium"
|
||
|
}
|
||
|
}
|
||
|
_ => {}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
# Utility functions
|
||
|
def parse_interval [interval: string]: string -> int {
|
||
|
match $interval {
|
||
|
$i if ($i | str ends-with "s") => ($i | str replace "s" "" | into int)
|
||
|
$i if ($i | str ends-with "m") => (($i | str replace "m" "" | into int) * 60)
|
||
|
$i if ($i | str ends-with "h") => (($i | str replace "h" "" | into int) * 3600)
|
||
|
_ => 60
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def update_agent_performance [agent: record, runtime: duration, results: list]: nothing -> nothing {
|
||
|
# Update agent performance statistics
|
||
|
# This would modify agent state in a real implementation
|
||
|
}
|
||
|
|
||
|
def process_agent_results [agent: record, results: list]: nothing -> nothing {
|
||
|
if ($results | length) > 0 {
|
||
|
print $"๐ Agent ($agent.name) generated ($results | length) insights:"
|
||
|
$results | each {|result|
|
||
|
print $" - ($result.type): ($result | get description? | default 'No description')"
|
||
|
} | ignore
|
||
|
|
||
|
# Send notifications if configured
|
||
|
send_agent_notifications $agent $results
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def send_agent_notifications [agent: record, results: list]: nothing -> nothing {
|
||
|
# Send notifications for agent findings
|
||
|
$results | each {|result|
|
||
|
if $result.severity? in ["high", "critical"] {
|
||
|
print $"๐จ ALERT: ($result.type) - ($result | get message? | default 'Critical finding')"
|
||
|
}
|
||
|
} | ignore
|
||
|
}
|
||
|
|
||
|
# Agent management commands
|
||
|
export def list_running_agents []: nothing -> list {
|
||
|
# List currently running agents
|
||
|
# This would query actual running processes in production
|
||
|
[]
|
||
|
}
|
||
|
|
||
|
export def stop_agent [agent_name: string]: string -> nothing {
|
||
|
print $"๐ Stopping agent: ($agent_name)"
|
||
|
# Implementation would stop the specific agent process
|
||
|
}
|
||
|
|
||
|
export def get_agent_status [agent_name?: string]: nothing -> any {
|
||
|
if ($agent_name | is-empty) {
|
||
|
print "๐ All agents status:"
|
||
|
# Return status of all agents
|
||
|
[]
|
||
|
} else {
|
||
|
print $"๐ Status of agent: ($agent_name)"
|
||
|
# Return status of specific agent
|
||
|
{}
|
||
|
}
|
||
|
}
|